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AGARDograph Series 160 & 300 

Soon after its founding in 1952, the Advisory Group for Aerospace Research and Development (AGARD) 
recognized the need for a comprehensive publication on Flight Test Techniques and the associated 
instrumentation. Under the direction of the Flight Test Panel (later the Flight Vehicle Integration Panel,  
or FVP) a Flight Test Manual was published in the years 1954 to 1956. This original manual was prepared 
as four volumes: 1. Performance, 2. Stability and Control, 3. Instrumentation Catalog, and 4. Instrumentation 
Systems. 

As a result of the advances in the field of flight test instrumentation, the Flight Test Instrumentation Group 
was formed in 1968 to update Volumes 3 and 4 of the Flight Test Manual by publication of the Flight Test 
Instrumentation Series, AGARDograph 160. In its published volumes AGARDograph 160 has covered 
recent developments in flight test instrumentation. 

In 1978, it was decided that further specialist monographs should be published covering aspects of 
Volumes 1 and 2 of the original Flight Test Manual, including the flight testing of aircraft systems.  
In March 1981, the Flight Test Techniques Group (FTTG) was established to carry out this task and to 
continue the task of producing volumes in the Flight Test Instrumentation Series. The monographs of this 
new series (with the exception of AG237 which was separately numbered) are being published as 
individually numbered volumes in AGARDograph 300. In 1993, the Flight Test Techniques Group was 
transformed into the Flight Test Editorial Committee (FTEC), thereby better reflecting its actual status 
within AGARD. Fortunately, the work on volumes could continue without being affected by this change. 

An Annex at the end of each volume in both the AGARDograph 160 and AGARDograph 300 series lists 
the volumes that have been published in the Flight Test Instrumentation Series (AG 160) and the Flight 
Test Techniques Series (AG 300) plus the volumes that were in preparation at that time.  
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High Altitude Rotary Wing Flight Testing – 
Considerations in Planning Rotary Wing  

Performance Testing for High  
Altitude Operations 

(STO-AG-300-V30) 

Executive Summary 
Performance charts for helicopters deployed by the NATO members were generated by flight tests scoped to 
cover altitudes relevant to the anticipated mission environments. The methods used to generate those graphs were 
robust and the models well-behaved given the domain of interest. However, during deployment of NATO aircraft 
to Afghanistan over the last 15 years, extremes of temperature at high altitudes were outside the domains of the 
models. The combined effects of weight and temperature extremes at high altitude are often not captured by these 
established methods of test. As a result, the actual performance is often less than that presented in the flight 
manual. Present approaches must be modified to capture those effects and further define the aircraft’s generalized 
power available and power required model. 

The generalized data models for power available and power required are analysed at the extremes of temperature 
as altitudes approach the limit where supplemental oxygen is used. The compressor reaches a limit bounded by the 
maximum total pressure ratio, Pt3/Pt2, attainable across the compressor. Past this limit, the pressure ratio across the 
compressor will decrease rapidly as will the mass flow rate. This limit is called the surge limit and must be 
defined during flight test. Temperature at higher altitudes affects the power required model in two ways. The rotor 
system reaches an aerodynamic limit when a critical amount of the retreating blade stalls or when the Mach 
effects on the advancing blade cause a large drag rise on the blade and increases the profile drag of the rotor 
system. Temperature effects at high altitude can create conditions conducive to vortex ring state. 

Engine assessment at extreme temperature conditions and high altitudes will define the conditions in the 
generalized model where the surge boundary occurs. Two methods exist for determining blade stall boundaries. 
One defines the relationship between the blade loading coefficient and the advance ratio. Varying airspeed, 
referred weight (W/s) and rotor rpm provides data that defines where the blade stall boundary occurs. Once this 
boundary is known, it can be used to predict the limiting airspeed at a given weight and rotor rpm. The Equivalent 
Retreating Tip Speed or ERiTS method uses an approach similar to one used to generalize the stall speed of fixed-
wing aircraft. A standard mission gross weight is chosen. Airspeed, referred weight, and rotor rpm are varied and 
a structural indication of blade stall is used to verify a mathematical model. Given a mission weight, altitude,  
and rotor rpm, an operator can determine the stall limit of the aircraft and determine the total power required for 
the limiting case. Many test techniques have been developed to determine the vortex ring state boundary of a 
helicopter; the paper references those papers.  

An understanding of the effects of temperature extremes at high altitude can inform the test organization about 
the choice of the scope and methods for accurately capturing data to verify power required and power available 
performance charts for high altitude operations. 
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Essais en vol de voilure tournante à haute altitude – 
Considérations pour la planification des essais  

de performance des voilures tournantes  
pour les opérations à haute altitude 

(STO-AG-300-V30) 

Synthèse 
Les graphiques de performance des hélicoptères déployés par les membres de l’OTAN ont été produits à l’aide 
d’essais en vol à des altitudes pertinentes pour les environnements de mission prévus. Les méthodes employées 
afin d’établir ces graphiques étaient robustes et les modèles bien adaptés au domaine concerné. Toutefois,  
les aéronefs de l’OTAN déployés en Afghanistan ces 15 dernières années ont rencontré à haute altitude des 
conditions extrêmes de température sortant du champ des modèles. Il est fréquent que ces méthodes d’essai 
courantes ne tiennent pas compte des effets combinés du poids et des températures extrêmes lors du vol à haute 
altitude. Les performances réelles sont donc souvent inférieures à celles indiquées dans le manuel de vol.  
Les approches actuelles doivent être modifiées pour intégrer ces effets et définir plus précisément la puissance 
globale disponible et le modèle de puissance nécessaire de l’aéronef. 

Les modèles de données génériques relatifs à la puissance disponible et à la puissance nécessaire sont analysés 
aux extrêmes de température, lorsque l’altitude s’approche de la limite où l’apport d’oxygène est nécessaire.  
Le compresseur atteint une limite liée au rapport de pression totale maximum, Pt3/Pt2, qui peut être obtenu dans le 
compresseur. Passée cette limite, le rapport de pression dans le compresseur diminuera rapidement, tout comme le 
débit massique. Cette limite est appelée limite de pompage et doit être définie pendant l’essai en vol.  
La température à haute altitude modifie de deux façons le modèle de la puissance nécessaire. Le système de rotor 
atteint une limite aérodynamique lorsqu’une portion critique de la pale reculante décroche ou lorsque l’effet Mach 
sur la pale avançante provoque une forte hausse de la traînée de la pale et augmente la traînée de profil du système 
de rotor. La température à haute altitude peut créer des conditions propices à la formation d’un anneau 
tourbillonnaire. 

L’évaluation du moteur en conditions de température extrême et à haute altitude définira les conditions du modèle 
générique dans lesquelles la limite de pompage survient. Il existe deux méthodes pour déterminer la limite de 
décrochage des pales. La première consiste à définir la relation entre le coefficient de charge de pale et le 
paramètre d’avancement. La vitesse anémométrique, la masse de référence (W/s) et le régime du rotor qui varient 
fournissent des données qui définissent la zone dans laquelle la limite de décrochage des pales est atteinte.  
Une fois que cette limite est connue, elle peut servir à prédire la vitesse anémométrique limite pour une masse et 
un régime de rotor donnés. L’autre méthode, appelée ERiTS (Equivalent Retreating Tip Speed) suit une approche 
similaire à celle utilisée pour généraliser la vitesse de décrochage des aéronefs à voilure fixe. Un poids total en 
charge de mission standard est choisi. La vitesse anémométrique, la masse de référence (W/s) et le régime du rotor 
sont modifiés et une indication structurelle du décrochage de pale sert à vérifier un modèle mathématique.  
Avec un poids, une altitude et un régime de rotor donnés en mission, un opérateur peut déterminer la limite de 
décrochage de l’aéronef et la puissance totale nécessaire pour le cas limite. De nombreuses techniques d’essai ont 
été développées pour déterminer la limite de formation d’un anneau tourbillonnaire d’un hélicoptère ; l’article les 
cite en référence. 

La compréhension des effets des températures extrêmes à haute altitude peut informer l’organisation chargée des 
essais sur la portée et les méthodes adaptées à un enregistrement précis des données, dans le but de vérifier les 
graphiques de performance de la puissance requise et de la puissance disponible dans les opérations à haute 
altitude. 
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Foreword 

Objective(s): 
Established performance test techniques for rotary wing aircraft produce a generalized performance model. 
The combined effects of weight and temperature extremes at high altitude are often not captured by these 
established methods of test. As a result, the actual performance is often less than that presented in the flight 
manual. This AGARDograph explains the effects and their causes and provides approaches to capture those 
effects and further define the aircraft’s generalized power available and power required model. 

Topics to be Covered: 
Topics to be covered include the generalized performance model for power available and power required,  
a discussion of the factors that limit power available, the blade stall and compressibility manifestations of  
weight, temperature and pressure (high altitude), vortex ring state and the approaches to define blade stall and 
compressibility boundaries. 
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HIGH ALTITUDE ROTARY WING FLIGHT TESTING – 
CONSIDERATIONS IN PLANNING ROTARY WING  

PERFORMANCE TESTING FOR HIGH ALTITUDE OPERATIONS 

1.0 INTRODUCTION 

1.1  Mishaps Caused by Weight, Altitude, and Temperature Effects 
The performance charts for helicopters deployed by the NATO members were generated by flight tests scoped to 
cover altitudes relevant to the expected mission environments. The models used to generate those graphs were 
well-behaved given the domain of interest. 

The mission environment encountered in Afghanistan challenged the validity of the generalized data model used 
for the generation of the performance charts. Specifically, the atmospheric effects of temperature and pressure 
imposed limitations on the performance of both the engine and the rotor system. The power produced by the 
engine, the power required for the rotor and the change in the corresponding drag were not well-characterized at 
temperature and pressure extremes during the initial testing. 

Mishaps occurred in OEF and during high altitude rescue operations in mountainous regions of the world. 
The cause factors in those mishaps pointed to three mechanisms; the effect of temperature on the engine power 
available limits, the effect of temperature on the compressibility effect on the rotor system, and the effect of 
temperature on the stall characteristics of the rotor system. 

These mishaps generated concern regarding helicopter operations in heavy, high, hot/cold conditions. 
The performance characteristics that affect the operations are reduced power available from the engine, 
additional power required due to retreating blade stall, additional power required due to advancing blade 
compressibility, inadequate rate of climb/ turn performance (specific excess power – Ps) for turbulent mountain 
operations, and the possibility of inadvertent vortex ring state during mountain operations. 

Helicopters will continue to operate in demanding hot and cold environments at high altitude. Efficient testing is 
required to provide the basis for performance chart development, which accurately reflects the expected 
performance in these environments. This report will discuss the parameters and the test strategies to define their 
boundaries. 

2.0 MODEL FOR POWER AVAILABLE 

2.1  Standard Limiting Factors 
Two subsystems govern the performance of the aircraft. A generalized data model can be derived for both the 
power provided by the engine and the power required for the rotor system to produce lift and overcome the drag 
of the rotor system and fuselage. The engine model describes the power available at a given true airspeed, 
ambient pressure, and ambient temperature. The rotor and fuselage model describe the power required to hover, 
fly level, climb, or descend at a given airspeed, blade rotational velocity, and ambient density. 

The model for power available is an engine model that accounts for losses from the inlet at a given airspeed, and 
the effects of temperature and pressure on the mass flow of the system. Since mass flow is directly related to 
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power, gas generator (N1) speed is used as the independent variable for characterizing the available Engine Shaft 
Horsepower (ESHP), limiting Turbine Gas Temperature (TGT), and limiting fuel flow (Wf). The variables are 
corrected for temperature, pressure, and engine inlet effects to generalize the power available model. [1] 

The engine performance characteristics of corrected Engine Shaft Horsepower (ESHPcorr), corrected power 
Turbine Gas Temperature (TGTcorr), corrected fuel flow (Wfcorr), and Specific Fuel Consumption (SFC) are 
plotted as a function of corrected engine gas generator speed (N1corr). These parametric relationships define 
engine performance over the range of operating conditions and are corrected to standard sea level conditions for 
comparison purposes. 

Using these relationships and imposing the transmission limit of the aircraft (ESHP limit), the TGT limit of  
the engine (TGT limit), the mechanical gas generator limit (N1 limit), and the fuel flow limit of the fuel pump 
(Wf limit), at a given forward flight velocity, ambient temperature and pressure; one can calculate the ESHP 
available for those conditions. 

The first step in analysing engine power available data is to correct for inlet effects by calculating the total 
pressure ratio and total temperature ratio at the compressor face, δt2 and θt2 respectively. The graphic in  
Figure 1 shows notional relationships between total temperature differential and the inlet recovery pressure ratio 
and calibrated airspeed. Although the graphic implies an increase in both parameters with an increase in 
airspeed, these relationships are dependent on the location and orientation of the engine with respect to the 
airframe. Additionally, barriers, air particle separators, and other devices which affect airflow are often placed in 
front of the inlet. As a result, these relationships are unique to the aircraft and even to each engine. Testing is 
conducted to empirically measure and plot these relationships.  

 

Figure 1: Inlet Recovery Relationships. 

Using this relationship and each data point’s ambient temperature and pressure ratio, the total pressure ratio and 
total temperature ratio at the compressor face for each point can be calculated by: 
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𝜃𝜃𝑡𝑡2 =
(𝑇𝑇𝑡𝑡2 − 𝑇𝑇𝑎𝑎)𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ + 𝑇𝑇𝑎𝑎

Tssl
 

𝛿𝛿𝑡𝑡2 =
𝑃𝑃𝑡𝑡2
𝑔𝑔𝑎𝑎

𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ ∗ 𝛿𝛿𝑎𝑎 

The collected data of ESHP (torque, Q, and rotor rpm, Nr), turbine gas temperature, TGT, N1 and fuel flow,  
Wf are corrected for the ambient temperature and pressure at each point: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 =
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃
𝛿𝛿𝑡𝑡2√𝜃𝜃𝑡𝑡2

 

𝑁𝑁1𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 =
𝑁𝑁1
√𝜃𝜃𝑡𝑡2

 

𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 =
𝑇𝑇𝑇𝑇𝑇𝑇
𝜃𝜃𝑡𝑡2

 

Wfcorr =
Wf

𝛿𝛿𝑡𝑡2√𝜃𝜃𝑡𝑡2
 

The corrected ESHP, TGT, and Wf are plotted vs. their corresponding corrected N1. These parametric 
relationships define the engine’s performance (Figure 2). 

 

Figure 2: Generalized Engine Parameters. 
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The next step is to impose the corrected variables’ limits and determine the corresponding corrected N1 value. 
The minimum of these corrected N1 values provides the corrected N1 used to determine the actual ESHP 
available. The corrected ESHP corresponding to the minimum corrected N1 is multiplied by the total pressure 
ratio and the square root of the total temperature ratio calculated for the atmospheric conditions of the applicable 
mission. 

This method assumes the gas generator limit is a mechanical limit and that the aerodynamic conditions inside the 
compressor are well-behaved, that is, ambient and inlet temperature effects on compressor pressure ratio are 
insignificant. When this assumption is false, the pressure ratio across the compressor degrades and, since mass 
flow is related to power, so does the power. 

A simple aerodynamic analysis of the rotor and stator in the compressor explains the effect. 

In an axial flow compressor, the individual rotor blades are attached at a fixed angle. Therefore the effective 
angle of attack of a given blade will only vary with changes in the relative airflow. Figure 3 shows a schematic 
of one of the rotor blades attached circumferentially to the compressor.  

 

Figure 3: Blade Element Diagram of a Compressor Rotor Showing Three Different Flow Conditions. 

The resultant velocity vector on the blade consists of the rpm vector and the airflow vector. The angle between 
the resultant velocity vector and the rotor chord line is the angle of attack. The engine is designed with variable 
stator blades to help control the airflow through the engine and to optimize the angle of attack at each stage.  
The rotor blade is an airfoil and the pressure difference created is a function of the angle of attack.  
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2.2  Engine Pressure Ratio (EPR) Limiting 
The engine pressure ratio is the total pressure across a jet engine, measured as the ratio of the total pressure at the 
exit of the propelling nozzle divided by the total pressure at the entry to the compressor. Jet engines use either 
EPR or compressor or fan rpm as an indicator of thrust. In a turboshaft application, an examination of the total 
pressure ratio over the expected ambient temperature range defines the pressure ratio limit of the engine.  
The total pressure ratio across the compressor, Pt3/Pt2, increases linearly with an increase in the angle of attack on 
the compressor rotor blades (Figure 4). The relationship of pressure ratio across the compressor with angle of 
attack on the compressor rotor is assumed constant over the range of temperatures experienced by the engine. 
This angle of attack has a stall limit just like any airfoil.  At this limit, the pressure ratio across the compressor 
will decrease rapidly as will the mass flow rate. This limit is called the surge limit. Compressor surge is 
characterized by a complete stoppage of flow or a flow reversal through the compressor system, or by a sharp 
reduction of the airflow handling ability of the engine for its operating rpm [2]. Compressor surge can damage 
an engine, so manufacturers will provide protection from this condition, often in the fuel control. The result is a 
loss of power when conditions are met that would otherwise result in surge (Figure 5).    

 

 

Figure 4: Pressure Ratio ~ Wing Lift Analogy. Figure 5: User’s Chart Showing Loss  
of Torque at Temperature Extremes. 

2.3  Effects of Compressor Pressure Ratio Limiting 
There are a number of causes for surge. Ambient temperature conditions affect the size of both the mass flow 
(airflow) velocity vector and the rotational velocity vector. The mass flow, corrected for temperature and 
pressure (Wacorr) is:  

𝐶𝐶𝐸𝐸𝑔𝑔𝑔𝑔𝐶𝐶𝐸𝐸𝑡𝑡𝐶𝐶𝐶𝐶 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝐸𝐸𝑓𝑓 =
𝑊𝑊𝑎𝑎√𝜃𝜃
𝛿𝛿

 

In the summer, high altitude and hot temperatures are a concern because the static atmospheric pressure ratio, δ, 
is reduced. Ambient air temperature is higher than standard atmosphere so corrected mass flow will decrease 
with altitude, but not as much as in standard atmosphere. On a cold day, temperature is colder so the temperature 
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ratio, θ, is less than on a standard day. Pressure is still affected deleteriously and now corrected airflow is less 
than on a standard day. If this were the only effect of temperature (we assume for illustrative purposes that  
the rotational vector remains constant), the angle of attack of the resultant vector would increase (red vectors, 
Figure 3 and Figure 6). The magnitude of the rotational vector is defined by the corrected gas generator speed, 
which is the rotational speed of the compressor divided by the square root of the temperature ratio, θ: 

𝑁𝑁1𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 =
𝑁𝑁1
√𝜃𝜃

 

 

Figure 6: Engine Compressor Performance Map. 

As the temperature goes down (i.e. colder than standard day condition), the corrected rotational speed gets 
larger. Again, for illustrative purposes, if the airflow vector remained constant, the elongation of the corrected 
rotational speed vector would cause the resultant angle of attack to increase (blue vectors, Figure 3 and  
Figure 6). 

Lower temperatures affect both the corrected airflow speed and the corrected rotational speed and both of those 
conditions result in an increased angle of attack. The added effects can cause compressor surge (Figure 6).  
As power is added to the engine, the corrected compressor speed and the corrected mass flow increase until an 
angle of attack limit is reached and with it, a corresponding compressor pressure limit Pt3/Pt2. At this point,  
the compressor surges. Reynolds number effects on each compressor blade change the efficiency of the 
compressor as altitude increases so the angle of attack at which the blade stalls, and the corresponding compressor 
ratio, changes with altitude. Thus, there are different surge lines for different altitudes. The indications in the 
cockpit do not identify an approaching power available limit (i.e. impending surge). No predicted engine limits 
have been reached, yet the engine is surging and the rotor system may be drooping. Also, if bleed air powered 
anti-icing or cabin heat is selected ON then surge will happen sooner. If you are single engine or One Engine 
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Inoperative (OEI), the raw N1 will be higher so onset of EPR limiting will happen sooner too, i.e. at warmer and 
lower altitudes. 

The test implications are simple. The test organization must plan for high altitude and low temperature 
conditions in order to produce an accurate model that can predict engine performance under extreme operation 
conditions. However, the amount of flight test conducted is usually a compromise based on the resources 
available. The U.S. Federal Aviation Administration’s civilian certification guidance provided in para 29.45 of 
Ref. [9] allows extrapolation and interpolation of flight test results using good engineering judgment. It also 
recognizes that traditional performance test methods have proven insufficient with modern rotorcraft designs; 
however, analysis is permitted if the methodology is suitable. It is believed that the methodology presented 
herein is suitable and would support extrapolation up to ±4,000’ density altitude for hover, takeoff and landing 
performance and up to ±2,000’ density altitude for handling qualities, Height-Velocity (H-V) and engine 
operating characteristics. The FAA guidance also warns against extrapolations and interpolations exceeding 
10°C below or 20°C above the flight test conditions. 

3.0 MODEL FOR POWER REQUIRED 

3.1  Standard Model Variables 
The power required model accounts for induced power, profile power (power required to drag the rotor system 
through rotation), the parasite power (power required to move the airframe through the air), the power for engine 
and transmission accessories, the power to overcome stall effects on the rotor system (retreating blade stall), 
and the power incurred when the blades are experiencing the effects of compressibility (Figure 7). 

Figure 7: Power Required Elements. 

The standard hover model describes the contribution of induced and profile power and is written: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 = �
𝑊𝑊3

2𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑
+

1
8𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔𝐸𝐸𝑓𝑓𝑑𝑑𝑓𝑓𝐶𝐶𝜌𝜌𝑎𝑎𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑𝜎𝜎𝑅𝑅

(Ω𝑅𝑅)3 
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Two assumptions are made in the derivation of the model; first the effects of compressibility are insignificant 
and an average coefficient of drag (Cdprofile) can be used since the angle of attack will not vary significantly.  
The forward flight model describes the contribution of induced, profile and parasite power. In describing the 
parasite power, spanwise drag on the rotor blades contributes to the power required. The same assumptions made 
in hover are maintained in forward flight: 

𝑊𝑊2

2𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑𝑉𝑉𝑡𝑡
+

1
8𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔𝐸𝐸𝑓𝑓𝑑𝑑𝑓𝑓𝐶𝐶𝜌𝜌𝑎𝑎𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑𝜎𝜎𝑅𝑅

(Ω𝑅𝑅)3(1 + 4.65𝑉𝑉𝑡𝑡2)/(Ω𝑅𝑅)2) +
1
2𝜌𝜌𝑉𝑉𝑡𝑡

3𝑓𝑓 

The two assumptions made in the derivation can break down with significant effects. In forward flight, 
the retreating blade can get to an angle of attack where it stalls. Compressibility of the advancing blade tip can 
affect both hover and forward flight. Both conditions can affect power required. Figure 8 shows the velocity and 
resulting lift dissymmetry in forward flight.  

Figure 8: Dissymmetry of Lift in Blade Stall. 

3.2  Blade Aerodynamics 
The resultant speed on the advancing blade is equal to the sum of the blade’s rotational velocity plus the 
helicopter’s forward speed: 

𝑉𝑉𝑓𝑓 + Ω𝑔𝑔 

ESHP =  
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The resultant speed at any point on the retreating blade is equal to the sum of the helicopter’s forward speed 
minus the blade’s rotational velocity: 

𝑉𝑉𝑓𝑓 − Ω𝑔𝑔 

A section of the retreating blade is moving forward through the air when the aircraft’s airspeed is faster than the 
component of the chordwise speed generated by the rotation of the rotor. The point at which the resulting speed 
is zero (forward speed is equal to the tangential speed of rotation) occurs when: 

𝑉𝑉𝑓𝑓 = Ω𝑔𝑔 

The proportion of the blade in reverse flow is defined as: 

𝑔𝑔
𝑅𝑅

= 𝑉𝑉𝑓𝑓
Ω𝑅𝑅

 

Where the advance ratio, µ, is defined as: 

𝑉𝑉𝑓𝑓
Ω𝑅𝑅

= 𝜇𝜇 

3.3  Blade Stall 
As the forward airspeed increases, the region of the retreating blade that is in reverse flow increases and the 
region of the blade that can produce lift decreases. If lift (L) on the blade is a function of angle of attack (α), 
density (ρ), velocity, and the area of the blade (A) that is not in reverse flow such that: 

𝐿𝐿 is proportional  to (𝛼𝛼 ∗ 𝜌𝜌 ∗ 𝑉𝑉2 ∗ 𝜌𝜌) 

Then to maintain balanced lift, as blade area decreases, angle of attack must increase. The condition is 
aggravated with increased forward cyclic as the demand for forward tilt of the tip path plane increases the lift 
requirement on the retreating blade. The retreating blade will stall at some point. Prior to this point,  
the coefficient of drag will increase rapidly and the assumption made in the derivation of the model that the 
coefficient of drag will remain relatively constant and well-behaved will be invalid. The profile drag will rise 
rapidly. The power required will increase in a manner not accounted for in the model. Consequently, each blade 
will move in and out of stall as it rotates and the stresses imparted on the pitch change links and other 
components can cause the loss of the aircraft. This is normally accounted for in the Vne changes of the aircraft 
with respect to increasing altitudes and decreasing temperatures, but non-standard hot/high conditions are not 
normally considered, increasing the risk of unexpected retreating blade stall. 

3.4  Compressibility at the Blade Tips 
Flight conditions at high altitude and cold temperatures are a concern because they provide the required 
conditions for compressibility effects. Compressibility can affect the power required in both hover and forward 
flight.  As the speed of the tip of the advancing blade approaches the local speed of sound, the air is compressed 
and a shock wave begins to form. Normally in a hover the blade is traveling at a Mach number of 0.6 to 0.7:  
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𝑀𝑀 =
𝑉𝑉𝑡𝑡

(𝐸𝐸𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝑓𝑓 𝑀𝑀𝐸𝐸𝑠𝑠𝑠𝑠𝐶𝐶)
 

𝐸𝐸𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝑓𝑓 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝐶𝐶(𝑑𝑑𝑡𝑡𝑀𝑀) = 38.9√𝑇𝑇𝑎𝑎(𝐾𝐾°) 

As the temperature decreases, the Mach number for the same rotational speed (rpm) increases. Again, in forward 
flight, the resultant speed on the advancing blade is equal to the sum of the blade’s rotational velocity plus the 
helicopter’s forward speed. As a result, the Mach number of the advancing blade is greater in forward flight than 
in a hover at the same temperature. Figure 9 shows the dissymmetry of lift caused by compressibility effects on 
the advancing blade in forward flight. 

 

Figure 9: Dissymmetry of Lift from Compressibility Effects. 

The critical Mach number is the Mach of the freestream at which a portion of the blade is at Mach 1 or the speed 
of sound. At freestream Mach numbers greater than this, a shock wave forms and with it, an associated drag rise 
and increase in power required, Figure 10, Figure 11(a) and Figure 11(b). 
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Figure 10: Formation of Shock Waves. 

 

Figure 11(a): Rotor Map-Simultaneous Stall and Compressibility Conditions in Forward Flight 
(counter-clockwise blade rotation, 120 knots, 20.3 degrees collective pitch, 104 KN thrust) [8]. 
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Figure 11(b): Shock-Induced Drag Rise. 

4.0 INFLUENCES OF WEIGHT, TEMPERATURE, AND ALTITUDE ON POWER 

4.1  Hover: Influences of Weight and Temperature, Hot and Cold 
In hover, the angle of attack is low enough that compressibility effects won’t occur until the blade rotation speed 
and ambient temperature produce a Mach number around 0.8. The Mach number at which the shock wave forms 
is a function of the angle of attack and the tip sweep/design of the blade. In a hover, the shock wave forms on the 
top of the blade. However, in forward flight, as the advancing blade decreases pitch, it is possible for the angle of 
attack on the advancing blade to attain a negative value momentarily and for the shock to form on the bottom of 
the blade. The local Mach number does not have to equal “1” for the shock wave to form in either case  
(Figure 12) and the model does not describe the drag associated with it.  

Figure 13 through Figure 15 graphically depict the notional effects of temperature on power available and power 
required in hover. Power required in hover increases directly with weight (Figure 13). Although density is in the 
induced and profile term of the hover equation, a decrease in density (with an increase in temperature) has a 
beneficial effect to profile power required but a negative effect to the induced power required. The overall effect 
is an increase in power required (Figure 14). As the temperature decreases, the local speed of sound decreases 
and the effect of compressibility can be realized on all blades simultaneously. If we no longer assume that the 
angle of attack is low enough that compressibility effects will not occur, the effect is a substantial increase in 
power required. Recall that the lower temperature also affects the engine pressure ratio so the resulting power 
available is also less than on a standard day (Figure 15).  
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Figure 12: Aerodynamic Drag as a Function of Mach and Angle of Attack (Subsonic Airfoil). 

 

Figure 13: Increase in Hover Power Required and Power Available with an Increase in Weight. 
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Figure 14: Effect of Temperature on Hover Power Available  
and Power Required – No Compressibility Effect. 

 

Figure 15: Effect of Temperature on Hover Power Available  
and Power Required – With Compressibility Effect. 
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4.2  Forward Flight: Influences of Weight, Blade Stall, and Compressibility 
Figure 16 through Figure 19 graphically depict the notional effects of temperature on power available and power 
required in forward flight.  Power required in forward flight increases directly with weight (Figure 16). Density 
is in the induced, profile, and parasite terms of the forward flight equation. A decrease in density (with an 
increase in temperature) has a beneficial effect to both profile and parasite power required but a negative effect 
to the induced power required. However, the induced power required decreases with forward speed so the 
overall effect is an increase in power required at low speeds and a decrease in power required at high speeds 
(Figure 17). If the temperature is high enough, the decreasing density sets up a requirement for more pitch on the 
retreating blade to generate the same lift. More pitch results in a blade stall condition (Figure 18). As the 
temperature gets lower, the local speed of sound decreases and the effect of compressibility can be realized on 
the advancing blade. If the assumption about the effect of compressibility is vacated, the effect is a substantial 
increase in power required. Again, the lower temperature limits the engine pressure ratio and the power available 
is less than on a standard day (Figure 19). 

 

Figure 16: Increase in Power Required with Increased Weight (Forward Flight). 
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Figure 17: Effect of High Temperature (Decreased Density)  
on Power Required and Available (Forward Flight). 

 

Figure 18: Effect of High Temperature (Decreased Density)  
with Blade Stall on Power Required (Forward Flight). 
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Figure 19: Effect of Low Temperature (Compressibility) on Power Required  
and Pressure Ratio Limiting on Power Available (Forward Flight). 

4.3  Climb/Descent: Influences of Blade Stall on Climb/Descent Speeds 
Climb performance in ft/sec can be calculated using the excess energy or difference between power required and 
power available for level flight divided by the gross weight: 

  𝑉𝑉′ =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑊𝑊

∗ 33000 

In a stabilized climb the mass flow rate through the rotor is greater than in forward flight so the induced velocity 
and the corresponding induced power is less in a climb. As airspeed increases, this benefit decreases along with 
the induced power contribution to the total power required. Also, this calculated climb rate assumes that the 
parasite drag of the fuselage is the same in climb as it is in level flight. This assumption is not valid since the 
angle of attack on the fuselage changes in the climb, the faceplate drag also changes and likely increases so the 
power required increases and overwhelms any benefit from lower induced power. As a result, the measured 
climb rate is lower than the calculated rate. Mountainous ops require that the aircraft have sufficient excess 
power to counter significant downdrafts. Downdrafts of 30 ft/sec or 1800 fpm are not uncommon. Blade stall 
and compressibility effects reduce excess power and corresponding calculated rate of climb and can drive the 
maximum rate of climb, minimum rate of descent, and best glide airspeeds to a slower than predicted value.  
The result can limit the helicopter’s ability to counter strong downdrafts and sets up the conditions conducive for 
vortex ring state on the main rotor.  
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4.4  Maneuvering Flight: Influences of Blade Stall and Compressibility 
Excess energy can also be used to define the maneuvering envelope as a function of altitude and airspeed for a 
given physical configuration. Figure 20 shows an energy management diagram for an unnamed helicopter.  
The lines of constant specific excess power, Ps, are depicted on a graph ranging altitude and airspeed.  
The energy management curves are an engineering transition of the power required and power available curves. 
Once the power available and power required have been determined for level flight conditions, using either the 
W/δ or W/σ approach, specific excess power can be calculated by subtracting power required from power 
available and dividing by the weight of the aircraft: 

Ps(fpm) =  
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑓𝑓 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑔𝑔𝐶𝐶𝑟𝑟𝐶𝐶

𝑊𝑊
∗ 33000 

 

Figure 20: Energy Management Diagram-Zero Angle of Bank. 

Fixed wing aircraft use a level acceleration technique where a timed, level acceleration at maximum power is 
conducted at different altitudes. This is impractical in a helicopter since the thrust vector is tilted forward using 
the tip path plane which would be constantly changing as the aircraft accelerated to maintain level flight.  
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The resulting variations in fuselage pitch attitude greatly affect the parasite drag of the aircraft so results are 
likely inconsistent. Each Ps line provides the rate of climb at an altitude and airspeed at zero angle of bank. 
The Ps line corresponding to zero rate of climb provides the maximum altitude at a set airspeed. The operator 
can use the graph to determine his minimum and maximum airspeed at a given altitude and his max rate of climb 
and best climb speed at a given altitude. As weight increases, Ps decreases. For maneuvering flight, maintaining 
level flight at a given angle of bank requires an increased normal load on the aircraft. This has the same effect on 
Ps at increasing the weight of the aircraft. Thus, at 45 degrees angle of bank, the maximum altitude at which the 
aircraft will maintain altitude (Ps = 0) is lower (Figure 21). The curves do not account for the increase in 
parasitic drag associated with the change in pitch attitude in a turn so a spot check of the curves at higher turn 
rates is warranted. 

 

Figure 21: Energy Management Diagram-45 Degree Angle of Bank. 

Energy management diagrams can be generated to provide the user with maneuvering limits for different 
altitudes (Figure 22 and Figure 23).  
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Figure 22: E-M Diagram, Sea Level, Standard Day. 

 

Figure 23: E-M Diagram, 6K Feet, Standard Day. 



HIGH ALTITUDE ROTARY WING FLIGHT 
TESTING – CONSIDERATIONS IN PLANNING ROTARY WING 

PERFORMANCE TESTING FOR HIGH ALTITUDE OPERATIONS 

STO-AG-300-V30 21 

 

Figure 22 is an E-M diagram for a notional helicopter at sea level, standard day. Using the diagram, at 80 knots 
the best turn rate in a level turn (where Ps equals zero) is 27 deg/sec and 63 deg angle of bank, yielding a turn 
radius of 300 feet. If the aircraft is over-banked by ten degrees, the aircraft quickly picks up a rate of descent of 
25 ft/sec. If the helicopter is at six thousand feet, standard day (Figure 23), the best turn rate in a level turn is 
18 deg/sec at approximately 80 knots and 55 degrees where Ps equals zero, yielding a turn radius of almost 
500 feet. If the aircraft is over-banked by five degrees, the aircraft quickly picks up a rate of descent of 15 ft/sec. 
If the pilot increases to 70 degrees, the descent rate reaches 50 ft/sec.  

One can see that the aircraft maneuvering performance is greatly affected by altitude and the operators must be 
familiar with the effects and limitations. Energy management diagrams must be provided for high altitude 
conditions. These diagrams need to incorporate the test results of compressibility and blade stall and so the test 
planning process needs to be informed by these requirements. 

5.0 VORTEX RING STATE 

5.1  Vortex Ring State Scenario 
There are a range of airspeeds and descent rates over which a helicopter will recirculate its rotor wake and fail to 
generate effective lift. This phenomenon is usually encountered during a descent at slow airspeed, when the 
velocity tangent to the rotor disk is small compared to the upward velocity of the air perpendicular to the rotor 
disk. When collective pitch is applied to arrest the rate of descent, the circulation of the rotor downwash 
increases creating vertical rings of inflow and outflow, the rotor head does not produce the anticipated lift,  
and the aircraft’s rate of descent increases. A number of criteria to define the boundaries of the phenomena have 
been proposed in the past. Among them are region of roughness, thrust or torque fluctuation, mean thrust 
reduction, zero velocity of tip vortices, blade-flapping fluctuation, wake breakdown, heave stability, and roll 
stability [5]. 

5.2  Vortex Ring State Parameters 
There are many methods for predicting the boundaries created by the combination of rate of descent and forward 
airspeed. Ref. [3] presents many of these. Most are resolved into a combination of horizontal velocity,  
and vertical velocity, Vv, both normalized by the induced velocity at the rotor in a hover, vih. There is a high 
probability of encountering vortex ring state when the tangential velocity is small and the perpendicular velocity 
is large. Xin and Gao [4] found that torque fluctuations occurred when Vv/vih was -0.28. If we use this 
conservative boundary, we can see how we can analytically determine the vertical velocity boundary based on 
weight, disk area and density: 

𝑉𝑉𝑎𝑎
𝑎𝑎𝑑𝑑ℎ

≤  −0.28 

𝑎𝑎𝑑𝑑ℎ =  �
𝑊𝑊

2𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑
 

If this boundary were plotted in terms of dimensional values, it would differ for varying atmospheric conditions 
(e.g., high altitude and cold temperature vice high altitude and hot). This effect is caused by the impact of air 
density on induced velocity. For example, as density increases for the same gross weight, vih decreases so the 
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vertical velocity must decrease to remain outside the boundary. This test team should therefore expect the onset 
of VRS at lower rates of descent then when operating in sea level conditions. 

It is important to notice that this and other analytical VRS boundaries present an overly simplified view of the 
conditions that are conducive to VRS. In fact, the formation of VRS is a flight-path dependent phenomenon. 
This is to say that the onset of VRS is not only dependent on whether the instantaneous flight condition falls 
inside some VRS boundary; rather, it is also affected by the temporal evolution of the maneuver. For this reason, 
the manner in which VRS is encountered (and the way in which recovery is effected) must be tested dynamically 
as the aircraft maneuvers in an operationally relevant manner. 

5.3  Vortex Ring State Testing 
A test approach used on the V-22 to define the VRS boundaries, first statically then dynamically, while 
characterizing the aircraft’s controllability and investigating recovery techniques is well-documented in Ref. [6] 
and Ref. [7]. 

6.0 BLADE STALL TESTING 

6.1  Blade Loading Coefficient 
There are two analytical methods that the tester can use to determine a test strategy to find the blade stall 
boundary. One uses a blade loading coefficient, tc, which is the thrust coefficient divided by the solidity ratio of 
the rotor disk, σR. The other determines the Equivalent Retreating Tip Speed (ERiTS). Both define the boundary 
by setting and incrementing the test conditions until stall is detected. The dynamic components on the rotor 
system are instrumented to look for cyclical changes in stresses on the dynamic components corresponding to 
stress loading and unloading caused by retreating blade stall.  

The blade loading coefficient is defined: 

tc =
2CT
𝜎𝜎𝑅𝑅

 

CT = 𝑊𝑊
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑(Ω𝑅𝑅𝑡𝑡𝐶𝐶𝑀𝑀𝑡𝑡)2 

𝜎𝜎𝑅𝑅 =
𝜌𝜌𝑏𝑏𝑓𝑓𝑎𝑎𝐶𝐶𝐶𝐶𝑀𝑀
𝜌𝜌𝐶𝐶𝑑𝑑𝑀𝑀𝑑𝑑

 

tc =
2nzW

𝜌𝜌𝜌𝜌𝑏𝑏𝑓𝑓𝑎𝑎𝐶𝐶𝐶𝐶𝑀𝑀(Ω𝑅𝑅𝑡𝑡𝐶𝐶𝑀𝑀𝑡𝑡)2 

The blade loading coefficient is a function of weight, normal acceleration, air density, blade area, and rotor rpm. 
As the advanced ratio increases with forward airspeed, the thrust loading coefficient at which stall occurs 
decreases (Figure 24). As density decreases, the blade loading coefficient increases and the forward speed at 
which stall occurs decreases. If the rotor rpm is increased, the blade loading coefficient decreases and the 
forward speed at which stall occurs increases. 
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Figure 24: Blade Loading Coefficient. 

Test organizations can vary airspeed, referred weight (W/σ) and rotor rpm to define where the blade stall 
boundary occurs. Once this boundary is known, it can be used to predict the boundary and determine the effect 
on power required. 

6.2  Equivalent Retreating Tip Speed (ERiTS) 
The ERiTS method uses an approach similar to one used to generalize the stall speed of fixed-wing aircraft.  
A standard mission gross weight is chosen. Again, the test team varies airspeed, referred weight, and rotor rpm. 
When a structural indication of blade stall occurs, the equation below can be satisfied: 

𝐸𝐸𝑅𝑅𝑑𝑑𝑇𝑇𝐸𝐸 = (Ω𝑅𝑅 − 𝑉𝑉𝑓𝑓)�
𝑊𝑊𝑀𝑀𝑡𝑡𝐶𝐶𝜌𝜌𝑎𝑎
𝑊𝑊𝑡𝑡𝐶𝐶𝑀𝑀𝑡𝑡𝜌𝜌𝑀𝑀𝑀𝑀𝑓𝑓

 

Given a mission weight, altitude, and rotor rpm, an operator can determine the stall limit of the aircraft and 
determine the total power required for the limiting case.  

7.0 COMPRESSIBILITY 

7.1  A Mention of Referred Weight, Referred True Airspeed and Referred Rotor RPM 
As mentioned previously, the aircraft’s power required may be limited by compressibility effects. If rotor rpm is 
kept constant throughout the test and set at the normal operational speed, then mission-relatable referred weight 
is a function of weight and density at that operational rotor rpm. The W/σ method does not easily permit 



HIGH ALTITUDE ROTARY WING FLIGHT 
TESTING – CONSIDERATIONS IN PLANNING ROTARY WING 
PERFORMANCE TESTING FOR HIGH ALTITUDE OPERATIONS 

24 STO-AG-300-V30 

 

investigation of changes in tip Mach number; therefore errors could arise if using results for predicting 
performance in very different temperature conditions. Operationally, the aircraft could be at vastly different 
actual weights but at the same density-based referred weight while at greatly different altitudes.   

There are two strategies to capture compressibility effects during testing. A constant referred weight using 
weight divided by pressure ratio, δ, and vary the rotor rpm over the range allowed for the helicopter. The test 
objective is to gather power required at one W/δ, and more than one referred rotor rpm, rpm/θ1/2.  The result of 
the data analysis is a family of referred rpm curves providing referred power required, ESHP/ δ∗ θ1/2, as a 
function of referred airspeed, Vt(ΩR)std/(ΩR)test, for one W/δ (Figure 25). 

 

Figure 25: Constant W/δ Strategy for Determining Compressibility Effects. 

In many helicopters, the rpm cannot be varied greatly so a constant W/σ method can be used with the rotor rpm 
set at the operational rotor rpm. In order to obtain data with the effects of compressibility, the same referred 
weight must be flown at altitudes yielding different combinations of weight and density ratio. Much like varying 
the rpm to maintain a constant referred rpm, altitudes are chosen to vary the inverse of the square root of the 
atmospheric temperature ratio, θ, at the constant rpm. This approach is harder to scope but the result is a family 
of referred rpm curves providing referred power required, ESHP/ δ∗ θ1/2, as a function of referred airspeed, 
V/rpm, for one W/σ (Figure 26). 
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Figure 26: Constant W/σ Strategy for Determining Compressibility Effects. 

8.0 SUMMARY 

Established methods of performance testing and the performance models that are generated from those methods 
often fail to accurately represent the combined effects of weight and temperature extremes at high altitude. 
Alternate models exist with the capacity to more accurately represent the power required under these extreme 
conditions. A test team with the understanding of the physics and capacity behind both models can properly plan 
and execute a performance test program that provides the operator with products that ensure safe and effective 
operation in the extreme environment at high altitude. In doing so, the team must consider the following. 

Test Location: Location will affect the ambient Temperature and Pressure available so early planning needs to 
ensure the range of conditions is obtainable. This will be based around the corrected data parameters that are 
required for validation of the operating performance for front line use or to meet specific test objectives. Site 
surveys to ensure appropriate facilities and security may be needed to form part of the test planning process. 

Test Technique Selection: Selection of test method and corrected weight grouping to allow objective of the test 
to be met. Choosing W/δ or W/σ, means corrected mass and vertical performance techniques, such as free air or 
tethered hovering, will have a significant impact on the planning and instrumentation of the aircraft and support 
requirements. If investigating tip effects then the test team will need to modify the aircraft to enable rotor speed 
variation and control, with associated airworthiness approvals required for flight testing.  
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Aircraft Ballasting/Weight: Ballasting schemes to get the weight required to meet the corrected weight for test 
will need to be developed and should consider emergency operation such as weight reduction in emergencies 
(water ballast use), and crash cases for structural integrity on ballast installation. During testing the weight of the 
aircraft is critical to accurate data collection. Provisions should be made to weigh everything; including the 
aircraft, crew and anything on the aircraft that adds weight. Specific gravity of the fuel will also vary and needs 
to be accounted to ensure the team account for the changes in the weight of the fuel during testing. A good 
understanding of the operation of the aircraft’s fuel indicating system is therefore also required.  

External Configuration: The profile drag of the airframe is a key part of the performance of the rotorcraft and 
pictorial records of the external configuration of the test aircraft can provide an important record. In addition the 
engine intake and exhaust configuration will have a significant impact in the installed engine performance. 

Instrumentation: Instrumentation to gather the data needed by the crew to achieve the data collection including 
engine parameters, fuel contents and flow rates, air data and aircraft flight parameters. Fuel flow instrumentation 
must meet requirements for accuracy of data and ensuring system is safe to operate. Strain gauging of rotor 
blades may be necessary to monitor structural stress during testing.  

Engine Performance Standard: Engine calibration to ensure that the power output of the engine is accurately 
defined and may be needed pre and post-test to assist analysis of the data gathered and needs to be planned in the 
test program. Spare calibrated engines for failures or rejections should also be considered in test planning. 

Test Sortie Planning: The test team should have planning charts to ensure that the required corrected data can 
be collected during the test sortie. Charts of the fuel gone/load and target corrected weight can be calculated to 
guide climbs between testing to ensure accurate data collection. Weather balloons may be used to identify non-
standard ambient conditions may be used to adjust planning charts to the conditions of the day.  

Data Quality: Time for rotor(s) and engine(s) to settle can mean long test points to reduce error and this time 
needs to be planned into the test profile to ensure accurate data can be obtained. The use of flight control system 
hold functions and their impact on performance data should be considered in test planning to ensure suitable 
performance data is collected. 

Avionics/Systems Effects: The reduced mass flow at high altitudes may impact cooling of systems (avionic or 
air vehicle) and needs to be considered in test planning. Advice form equipment manufacturers may be needed. 

Aircrew Safety and Survival Equipment: Training and equipment for extreme weather conditions and survival 
in the event of force landings in remote locations in extreme climates needs to be considered during early test 
planning. The use of parachutes and oxygen systems will also need to be considered depending upon the height 
above ground and pressure altitude the aircraft will be operated at. 

Emergencies: Some high altitude testing may place the aircraft in abnormal and unusual flight conditions. 
Briefing for emergencies due to any test hazards, i.e. vortex ring or actions if an engine fails in an unusual rotor 
speed setting for example may need to be considered to understand the operating risks during test conduct and to 
ensure suitable mitigations and preparation are taken by the test team. Aircrew egress with personal and aircraft 
equipment should also be considered to ensure crews are able to evacuate the aircraft with abnormal and bulky 
equipment.  
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